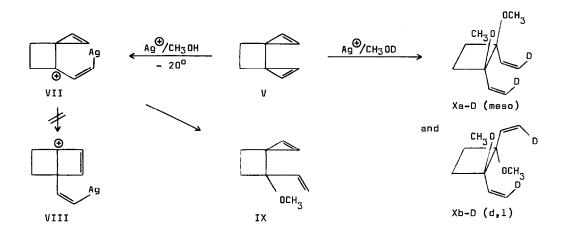
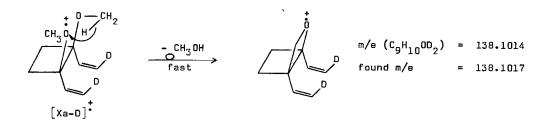

THE SILVER(I) CATALYZED REARRANGEMENT OF BICYCLOPROPENYLS EVIDENCE FOR A STEPWISE MECHANISM

F.C. Peelen, G.G.A. Rietveld, I.J. Landheer, W.H. de Wolf and F. Bickelhaupt Scheikundig Laboratorium der Vrije Universiteit, De Lairessestraat 174, Amsterdam-Z, The Netherlands


(Received in UK 1 October 1975; accepted for publication 23 October 1975)

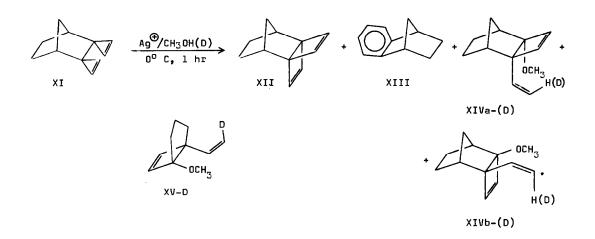
The silver(I) catalyzed rearrangement of the bicyclopropenyl system I has proven to offer a valuable entry into the field of substituted Dewar benzenes II^{1-7} . The following mechanism has been proposed by Weiss for this interesting reaction².



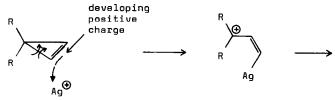
Whereas the intermediacy of IV has been established by strong indirect evidence²⁻⁷ and by its solvolytic interception⁷, no such evidence exists for the intermediacy of III; in fact, the possibility of synchronous ring opening and rearrangement, leading from I to IV under circumvention of III, has been suggested². From the investigation of this reaction in 1,1'-bridged bicyclopropenyls we have obtained direct evidence for both III and IV as intermediates.

 V^{8} [NMR (CDCl₃): δ 7.28 (s, 4H), 2.02 (s, 4H); IR (neat): 1622 (m), 1010 (m) cm⁻¹] was obtained from 1,2-dimethylenecyclobutane (12.5% yield), by the sequence reported previously⁵. When V was treated with AgClO₄ in CDCl₃ at - 20° C, only starting material and polymer was obtained. However, in CH₃OH⁹ (- 20° C, 1 hr) the primary ring opened cation VII, corresponding to III, was intercepted by solvolysis. Apparently the usual and very rapid cyclopropenylcarbinyl-cyclobutenyl rearrangement^{10,11} is inhibited by excessive strain in the resulting VIII¹². Instead VII is solvolyzed to IX⁸. Even at somewhat higher temperature (0° C, 1 + CH₃OD) rearrangement to VIII was not observed, 1187 but further ring opening to the stereoisomeric pair $Xa-D^8$ and $Xb-D^8$ occurred; not surprisingly, the second attack of silver(I) showed little stereoselectivity (ratio 4 : 3).

The meso and d,l configuration of Xa-D and Xb-D could be derived from their mass spectra. Contrary to Xb-D no molecule ion peak was observed for Xa-D, the fragment with the highest m/e value being $[M-32]^{+}$. The rationalisation given below implies cis-configuration of the two CH₃O-groups in Xa-D.


The position of the deuterium atoms could be determined from the NMR spectra, IX showing coupling constants $[J_{HH}(D)$ trans, J_{HH} cis, $J_{HH}(D)$ gem.] of: 17.4, 10.8 and 1.7 Hz for the protons of the vinyl group, while Xa-D and Xb-D gave values of: 2.6, 10.8 and ca. 0.3 Hz, thus establishing the Z-configuration of deuterium.

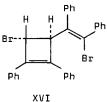
This stereospecificity of the deuterium incorporation was also observed in the following reactions. XI^8 [NMR (CDCl₃): δ 7.01 (s, 4H), 2.01, 1.87 (2m, 1H), 1.60 (bs, 6H),


1.38, 1.24 (2 21m, 1H); IR (neat): 1633 (m), 1618 (m), 1014 (a) cm⁻¹] (obtained as usual⁵ from 2,3-dimethylene norbornane, yield 20%) gave on reaction with AgClO₄ in CH₃OH(D) (0° C, 1 hr) besides the Dewar benzene XII⁸ [NMR (CDCl₃): δ 6.63 (a, 2H), 6.27 (a, 2H), 2.35 (ba, 2H), 2.10, 1.92 (21m, 1H), 1.34 (ba, 5H); IR (neat): 3022 (m), 1520 (w), 786 (a) cm⁻¹] and benzonorbornene (XIII)^{8,13}, two stereoisomeric CH₃OH(D) adducts XIVa-(D)⁸ and XIVb-(D)⁸ (13 : 1)¹⁴ of which the coupling constants for the protons of the vinyl group were: XIVa: 17.6, 10.7, 2.1 Hz; XIVa-D: 2.6, 10.7, ca. 0.3 Hz; XIVb: 17.5, 10.5, 2.1 Hz; XIVb-D: 2.6, 10.5, ca. 0.3 Hz.

The analogous CH₃OD adduct⁷ XV-D⁸ from 1,1'-trimethylenebicyclopropenyl showed vinyl group couplings of: 2.6, 10.4 and ca. 0.3 Hz.

These results strongly suggest an intermediate in which silver(I) is replaced with retention¹⁵.

The observed stereochemistry of the cyclopropene ring opening is the one to be expected if silver(I) attacks the π -bond with concomitant disrotatory ring opening of the incipient cyclopropyl cation^{2,16}, turning silver to the inside of the resulting allyl cation¹⁷.



References and Notes

- R. Weiss and C. Schlierf, Angew. Chem., <u>83</u>, 887 (1971)
 R. Weiss and S. Andrae, Angew. Chem., <u>85</u>, 145 (1973)
 R. Weiss and S. Andrae, Angew. Chem., <u>85</u>, 147 (1973)
 W.H. de Wolf, J.W. van Straten and F. Bickelhaupt, Tetrahedron Lett., <u>1972</u>, 3509
 I.J. Landheer, W.H. de Wolf and F. Bickelhaupt, Tetrahedron Lett., <u>1974</u>, 2813
 W.H. de Wolf, I.J. Landheer and F. Bickelhaupt, Tetrahedron Lett., <u>1975</u>, 179
 I.J. Landheer, W.H. de Wolf and F. Bickelhaupt, Tetrahedron Lett., <u>1975</u>, 349
 The compound gave a satisfactory high resolution mass spectrum
 For CH₃OH adducts in silver(I) catalyzed cyclopropene ring opening reactions see e.g. a. T.A. Eisele, L.M. Libbey, N.E. Pewlowski, J.E. Nixon and R.O. Sinnhuber, Chem.
 - Phys. Lipids, <u>12</u>, 316 **(**1974)
 - b. E.L. Schneider, S.P. Loke and D.T. Hopkins, J. Amer. Oil Chem. Soc., <u>45</u>, 585 (1968)
- 10. R. Breslow, J. Lockhart and A. Small, J. Amer. Chem. Soc., <u>84</u>, 2793 (1962)
- 11. Houben-Weijl, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1971, Bd. 4/3, 775

12. Similarly, was not formed from , R. Weiss and S. Andrae, Angew. Chem., <u>B6</u>, 276 (1974)

- 13. M.M. Martin and R.A. Koster, J. Org. Chem., 33, 3428 (1968)
- 14. The exo and endo-configuration were tentatively assigned on the basis of the NMRspectra
- 15. For a comparable Ag[⊕] replacement with retention see G.M. Whitesides, C.P. Casey and J.K. Krieger, J. Amer. Chem. Soc., <u>93</u>, 1379 (1971)
- 16. R.B. Woodward and R. Hoffmann, Conservation of orbital symmetry, Verlag Chemie, Weinheim, 1970, 47
- 17. One of the products resulting from the reaction between Br₂ and 2,2',3,3'-tetraphenylbicyclopropenyl has been assigned structure XVI with cis-configuration of bromine, in agreement with the stereochemistry found in our case; R. Weiss and H.P. Kempcke, Tetrahedron Lett., <u>1974</u>, 155.

